$(NPr_4^n)[SRe^V(S_4)(S_3CMe_2)]:$ Ein $[SRe^V(S_4)_2]^-$ -Derivat**

A. Müller*, M. Lemke, E. Krickemeyer, H. Bögge und M. Penk

Fakultät für Chemie, Lehrstuhl für Anorganische Chemie I, D-33615 Bielefeld, Bundesrepublik Deutschland

$(NPr_4^n)[SRe^V(S_4)(S_3CMe_2)]$: An $[SRe^V(S_4)_2]^-$ -Derivative

Summary. The preparation of $(NPr_4^n)[SRe(S_4)(S_3CMe_2)](1)$, $(NPr_4^n)[SRe(S_4)_2](2)$, $(NBu_4^n)[SRe(S_4)_2](3)$ and a new modification of $(PPh_4)[SRe(S_4)_2](4)$ are reported, including the X-ray structures of 1 and 4.

Keywords. Crystal structure; Polysulfido ligands; Synthesis.

Einleitung

Während zahlreiche Komplexe und Cluster mit Polysulfido-Liganden, die häufig interessante Strukturen aufweisen, bekannt sind [1–4], gibt es nur wenige Angaben über Spezies, in denen im S_x^{2-} -Liganden ein S-Atom (formal) substituiert worden ist [5, 6]. Da einerseits bei der Synthese von sekundären Mercaptanen aus den entsprechenden Ketonen (z. B. 4-Methyl-2-pentanthiol aus 4-Methyl-2-pentanon) Re₂S₇ als selektiver Katalysator dient [7] und andererseits die Analyse der Paarverteilungsfunktionen von röntgenamorphem Re₂S₇ Hinweise auf das Vorliegen von S₂²⁻-Liganden ergibt [8], sind Reaktionen von S_x²⁻-Liganden mit Ketonen von gewissem Interesse. Hier wird u. a. über die Bildung des [SRe(S₄)(S₃CMe₂)]⁻-Ions aus Perrhenat, Polysulfid und Aceton berichtet.

Experimenteller Teil

Darstellung der Verbindungen

 $(NPr_4^n)[SRe(S_4)(S_3CMe_2)]$ (1), $(NPr_4^n)[SRe(S_4)_2]$ (2) und $(NBu_4^n)[SRe(S_4)_2]$ (3) entstehen durch Umsetzung von Ammoniumperrhenat mit einer methanolisch-wäßrigen Ammoniumpolysulfid-Lösung (1 in Gegenwart von Aceton). 2 und 3 sind Salze des schon früher beschriebenen komplexen Anions $[SRe(S_4)_2]^-$ [9–11]. 3 kann in einer Darstellungsvariante in annähernd quantitativer Ausbeute durch Reduktion von $[ReO_4]^-$ bei Raumtemperatur gewonnen werden. $(PPh_4)[SRe(S_4)_2]$ entsteht in einer zweiten Modifikation (4) gegenüber der in [9] publizierten Verbindung $(PPh_4)[SRe(S_4)_2]$ (5) durch Änderung der Reaktionsparameter der dort angegebenen Darstellungsmethode.

^{**} Herrn Prof. Dr. A. Meller mit den besten Wünschen zum 60. Geburtstag gewidmet

$(NPr_4^n)[SRe(S_4)(S_3CMe_2)]$ (1)

In eine Suspension von 2.0g (62.4 mmol) Schwefel in einer Lösung von 4 ml 25% iger wäßriger Ammoniaklösung in 200 ml Methanol wird unter Rühren bei 45–50 °C Schwefelwasserstoff-Gas mit einer Strömungsgeschwindigkeit von ca. 201/h eingeleitet, bis sich aller Schwefel gelöst hat. Nach Zugabe von 2.0g (7.5 mmol) Tetra-*n*-propylammoniumbromid wird ca. 5 min gerührt. Die entstandene tiefrote Polysulfid-Lösung* wird mit 0.2 g (0.75 mmol) fein gemörsertem Ammoniumperrhenat versetzt und ca. 3 min bei 45 °C gerührt. Anschließend wird mit 0.10 ml (1.4 mmol) Aceton versetzt und im geschlossenen 250 ml-Rundkolben erschütterungsfrei bei ca. 20 °C zur Kristallisation stehengelassen. Die ausgefallenen dunkelroten Kristalle von 1 werden nach 7 d abfiltriert, nacheinander mit Isopropanol, Wasser, Isopropanol und Diethylether gewaschen und an der Luft getrocknet. Aus der Mutterlauge fallen bei 5–7 °C langsam Kristalle von 1 nach. Ausbeute: 0.37 g (0.55 mmol, 73% bezogen auf eingesetztes Ammoniumperrhenat). C₁₅H₃₄NReS₈ (Mg = 671.2): ber. C 26.9, H 5.1, N 2.1, S 38.2; gef. C 27.1, H 5,1, N 2.6, S 37.4. IR ([cm⁻¹]): 511 (st, v(Re=S)); Raman ($\lambda_e = 647.1$ nm; [cm⁻¹]): 512 (ν (Re=S)); UV/Vis (λ [nm], ε [l mol⁻¹ cm⁻¹]): 350(5.4·10³), 390(4.2·10³).

$(NPr_{4}^{n})[SRe(S_{4})_{2}](2)$

Eine methanolisch-wäßrige Polysulfid-Lösung* (hergestellt aus 3.1 g (96.7 mmol) Schwefel, 5 ml 25% iger wäßriger Ammoniaklösung, 150 ml Methanol und Schwefelwasserstoff-Gas; siehe unter Darstellung von 1) wird mit 1.0 g (3.8 mmol) Tetra-*n*-propylammoniumbromid versetzt und ca. 5 min gerührt. Nach Zugabe von 0.3 g (1.1 mmol) fein gemörsertem Ammoniumperrhenat wird bei ca. 50 °C so lange gerührt, bis alles Ammoniumperrhenat gelöst ist (Dauer ca. 3 min). Die Lösung wird in einem geschlossenen 250 ml-Rundkolben erschütterungsfrei bei 20–25 °C zur Kristallisation stehengelassen. Die ausgefallenen dunkelbraunen, sternförmig verwachsenen Kristalle von 2 werden nach 10 d abfiltriert und, wie bei der Darstellung von 1 angegeben, aufgearbeitet. Aus der Mutterlauge fallen bei 5–7 °C innerhalb von 10–15 d Kristalle von 2 nach. Ausbeute: 0.527 g (0.80 mmol, 73% bezogen auf eingesetztes Ammoniumperrhenat). $C_{12}H_{28}NReS_9$ (Mg = 661.1): ber. C21.8, H4.3, N 2.1; gef. C21.4, H4.2, N 2.1. IR ([cm⁻¹]): 526 (st, v(Re=S)); UV/Vis (λ [nm], ε [1mol⁻¹ cm⁻¹]): 315(6.6·10³), 360(6.1·10³).

$(NBu_{4}^{n})[SRe(S_{4})_{2}](3)$

Eine methanolisch-wäßrige Polysulfid-Lösung* (hergestellt aus 3.6 g (112.5 mmol) Schwefel, 10 ml 25% iger wäßriger Ammoniaklösung, 250 ml Methanol und Schwefelwasserstoff-Gas; siehe unter Darstellung von 1) wird mit 5.2 g (16.2 mmol) Tetra-*n*-butylammoniumbromid versetzt und ca. 5 min gerührt. Nach Zugabe von 1.0 g (3.75 mmol) fein gemörsertem Ammoniumperrhenat wird solange gerührt, bis alles Ammoniumperrhenat gelöst ist (Dauer ca. 5 min). Die Lösung wird in einem geschlossenen 500 ml-Rundkolben erschütterungsfrei bei 20–25 °C zur Kristallisation stehengelassen. Nach 4–5 d wird die erste Fraktion der dunkelbraunen blättchenförmigen Kristalle von 3 isoliert (75–80% der Gesamtausbeute). Die restliche Menge an 3 wird nach weiteren 20 d bei 20–25 °C aus der Mutterlauge erhalten. Die Aufarbeitung der Kristalle erfolgt, wie bei der Darstellung von 1 angegeben. Ausbeute: 2.6 g (3.6 mmol, 96% bezogen auf eingesetztes Ammoniumperrhenat). C₁₆H₃₆NReS₉ (Mg = 717.2): ber. C 26.8, H 5.1, N 2.0; gef. C 26.4, H 4.8, N 1.7. IR ([cm⁻¹]): 519 (st, v(Re=S)); Raman ($\lambda_e = 647.1$ nm; [cm⁻¹]): 521 (v(Re=S)); UV/Vis (λ [nm], ε [1mol⁻¹ cm⁻¹]): 315(6.9 · 10³), 360(6.6 · 10³).

^{*} Die tiefroten methanolisch-wäßrigen Polysulfid-Lösungen zur Darstellung von 1, 2 und 3 sind an der Luft einige Stunden, verschlossen mindestens 2 Wochen stabil. Um gute Fällungsbedingungen zu erzielen, sollten nicht mehr als 4 ml 25% iger wäßriger Ammoniaklösung pro 100 ml Methanol eingesetzt werden. Pro 1 ml 25% iger wäßriger Ammoniaklösung können maximal ca. 0.7 g Schwefel gelöst werden.

(PPh₄)[SRe(S₄)₂], 2. Kristallmodifikation (4)

(Alle Arbeiten werden unter Argon-Atmosphäre durchgeführt.) Eine Mischung von 1.0 g (2.1 mmol) Rheniumheptoxid, 2.0 g (4.8 mmol) Tetraphenylphosphoniumbromid und 75 ml Acetonitril (p.a., O_2 -frei) wird bei 40 °C (Innentemperatur) vorsichtig mit 15 ml frisch hergestellter methanolischer Ammoniumpolysulfid-Lösung (Herstellung siehe unten) versetzt. Es wird 1 min bei 40 °C gerührt, schnell filtriert und das dunkelbraune Filtrat unter Argon-Atmosphäre im geschlossenen 100 ml-Rundkolben erschütterungsfrei bei 20–25 °C zur Kristallisation stehengelassen. Nach 7d wird abfiltriert, der Filterrückstand nacheinander mit Isopropanol, Schwefelkohlenstoff (zur Entfernung von mitgefallenem Schwefel) und Diethylether gewaschen und an der Luft getrocknet. Die dunkelbraunen Kristalle von 4 sind luftstabil und werden mechanisch von ebenfalls mitangefallenen farblosen Kristallen von Tetraphenylphosphoniumperrhenat abgetrennt. Ausbeute: 0.5 g (0.61 mmol, 15% bezogen auf eingesetztes Rheniumheptoxid). $C_{24}H_{20}PReS_9$ (Mg = 815.2): ber. C 35.4, H 2.5; gef. C 35.9, H 2.6. IR: Bande der v(Re=S)-Schwingung von starker Kationbande überlagert; Raman ($\lambda_e = 647.1$ nm; [cm⁻¹]): 523 (v(Re=S)); UV/Vis (λ [nm], ε [1 mol⁻¹ cm⁻¹]): 315(6.6·10³), 360(6.1·10³).

Herstellung der methanolischen Ammoniumpolysulfid-Lösung: In einem 500 ml-Rundkolben mit Gaseinleitungsrohr wird 1 h unter Sauerstoffausschluß über Kaliumhydroxid getrocknetes Ammoniak-Gas in 200 ml Methanol (p.a., getrocknet und O_2 -frei) eingeleitet. Nach Zugabe von 20 g (0.62 mol) Schwefel wird sofort danach 1 h über Calciumchlorid getrocknetes Schwefelwasserstoff-Gas eingeleitet (die ersten 15 min unter Rühren), wobei sich der Schwefel vollständig auflöst und eine tiefrote Lösung resultiert. Bei Ausschluß von Wasser und Sauerstoff ist die so erhaltene Polysulfid-Lösung einige Zeit stabil.

Lösung und Verfeinerung der Kristallstrukturen

Die Strukturen von 1 und 4 wurden aus Einkristall-Diffraktometer-Daten bestimmt (Syntex P2₁-Vierkreisdiffraktometer), wobei Kristalldaten und Einzelheiten der Intensitätsmessungen der Tab. 1 entnommen werden können. Die Elementarzellendimensionen wurden bei 21°C aus der Verfeinerung der Winkelpositionen von 15 Reflexen ($19^{\circ} < 2\Theta < 27^{\circ}$ (1), $22^{\circ} < 2\Theta < 31^{\circ}$ (4)) ermittelt. Empirische Absorptions-, Lorentz- und Polarisationskorrekturen wurden angewendet und anomale Dispersionskorrekturen für alle Atome vorgenommen. Die Atomstreufaktoren wurden Standardquellen [12a] entnommen. Die Lösung der Strukturen erfolgte mit Hilfe von Schweratommethoden (SHELXTL-Programmpaket [12b]), wobei nach Ermittlung der Positionsparameter der schweren Atome die Positionen der restlichen Nicht-Wasserstoffatome durch aufeinanderfolgende Differenz-Fouriersynthesen und "Kleinste Quadrate-Verfeinerung" bestimmt wurden. Die abschließenden Verfeinerungen konvergierten zu den in Tab. 1 angegebenen Werten. Wasserstoffatome wurden in berechneten Positionen auf den entsprechenden C-Atomen "reitend" mitverfeinert. Während der letzten Verfeinerung variierte kein Parameter um mehr als 0.1σ (σ = Standardabweichung des Parameters). Die abschließenden Differenz-Fouriersynthesen zeigten keine signifikanten Maxima. Atomkoordinaten und äquivalente isotrope Thermalparameter sind in den Tab. 2 und 3 wiedergegeben. Die aus den Einkristalldaten berechneten Pulverdiffraktogramme stimmen mit den gemessenen überein.

Die Messung der physikalischen Daten erfolgte mit folgenden Instrumenten: IR-Spektren (CsI): Perkin Elmer 180 Grating und Mattson Polaris FTIR 1040. UV/Vis-Spektren (DMF): Beckman Acta M IV und Shimadzu UV-160A. Raman-Spektren (CsI, rotierender Probenpreßling, $\lambda_e = 647.1$ nm): SPEX-Ramalog V.

Verbindung	$(NPr_4^n)[SRe(S_4)(S_3CMe_2)]$	$(PPh_4)[SRe(S_4)_2]$			
Summenformel	$C_{15}H_{34}NReS_8$	$C_{24}H_{20}PReS_9$			
Kristalldimensionen [mm]	$0.45 \times 0.2 \times 0.1$	$0.6 \times 0.2 \times 0.2$			
Raumgruppe	$P2_1/n$	$P2_1/c$			
a[pm]	1086.6(6)	1118.7(4)			
<i>b</i> [pm]	1716.9(11)	1356.0(5)			
<i>c</i> [pm]	1410.2(9)	1940.2(7)			
β [°]	90.87(5)	94.05(3)			
$V[10^6 \text{ pm}^3]$	2630.8	2935.9			
Z	4	4			
$\rho_{\rm ber}[g/{\rm cm}^3]$	1.69	1.84			
μ (Mo-K _a) [cm ⁻¹]	53.0	48.8			
F(000) [Elektronen]	1336	1592			
Strahlung	$Mo-K_{\alpha}(\lambda = 71.069 \text{ pm}, \text{Graphit-Monochromator})$				
Art der Messung	ω-scan				
Meßbereich [°]	4.0-50.0 4.0-52.0				
Reflexmessung	1° in ω symmetrisch um K $\alpha_{1,2}$ -Maximum				
Meßgeschwindigkeit [° min ⁻¹] Meßzeitverhältnis	2.9–29.3	3.5–29.3			
Untergrund/Reflex	0.55	0.7			
Referenzreflexe	3 Reflexe alle	3 Reflexe alle			
	100 Reflexe	100 Reflexe			
Zahl der gemessenen					
Reflexe	5237	6567			
Zahl der unabhängigen					
beobachteten Reflexe					
$(F_{\rm o} > 3.92\sigma(F_{\rm o}))$	2637	4297			
Zahl der Variablen	146	148			
R/R_w^a	0.084/0.075	0.058/0.073			
g ^b	0.0002	0.0001			

Tabelle 1. Kristalldaten, Meß- und Verfeinerungsparameter von 1 und 4

^a $R_w = (\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2)^{1/2}$ ^b $1/w = \sigma^2 (F) + gF^2$

Ergebnisse und Diskussion

Die Strukturen der Anionen von 1 und 4 sind in Abb. 1 und 2 wiedergegeben. Eine schematische Darstellung der beiden ReS4-Ringe I und II zur vergleichenden Diskussion ist in Abb. 3 gezeigt.

Zur Verdeutlichung der unterschiedlichen Packungen der in den zwei Modifikationen kristallisierenden Verbindung (PPh_4) [SRe $(S_4)_2$] findet man eine Darstellung der Elementarzellen von 4 und 5 in Abb. 4. Während bei 4 die terminalen S-Atome benachbarter [ReS₉]⁻-Anionen "aufeinanderzu" gerichtet sind (rel. kurzer Abstand: 328.3 pm), sind diese in 5 weiter als 400 pm voneinander entfernt. Aus den Tab. 4 und 5 sind einige vergleichbare Strukturdaten von 1, 4, 5 und (NMe_4) [SRe(S(CH₂)₂S)₂] 6 [13] zu entnehmen. Die Re-Atome in den Anionen von 1, 4, 5 und 6 befinden sich

860

Atom	x	у	Z	$U(eq)^*$
Re	7658(1)	3366(1)	3727(1)	57(1)
S (1)	5794(5)	3731(4)	3114(4)	78(2)
S(2)	5938(6)	4246(5)	1760(5)	98(3)
S(3)	7635(6)	4682(4)	1846(5)	96(3)
S(4)	8596(5)	3695(4)	2304(4)	75(2)
S(5)	9095(5)	2411(4)	3603(5)	80(2)
S(6)	8590(6)	1399(4)	4280(5)	97(3)
S(7)	6454(5)	2452(4)	4438(4)	74(2)
S(8)	8226(5)	4149(3)	4772(4)	73(2)
C(1)	7438(18)	1770(13)	5083(13)	68(6)
C(2)	6656(22)	1050(15)	5349(16)	105(8)
C(3)	8046(22)	2171(15)	5928(15)	103(8)
Ν	7503(12)	1666(10)	288(9)	52(4)
C(4)	7132(19)	2478(13)	30(15)	79(7)
C(5)	7926(20)	2895(13)	-677(15)	81(7)
C(6)	7455(23)	3747(15)	- 887(17)	116(10)
C(7)	7705(16)	1165(12)	- 581(12)	58(5)
C(8)	6707(20)	1106(14)	-1290(14)	82(7)
C(9)	7015(20)	547(14)	-2075(14)	92(8)
C(10)	8749(16)	1730(13)	822(12)	63(5)
C(11)	9151(21)	959(15)	1237(15)	94(8)
C(12)	10423(20)	1052(16)	1670(15)	96(8)
C(13)	6487(17)	1320(11)	858(12)	58(5)
C(14)	6239(18)	1702(14)	1805(13)	76(6)
C(15)	5180(19)	1280(13)	2278(14)	82(7)

Tabelle 2. Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Thermalparameter (pm² $\cdot 10^{-1}$) von 1

* Äquivalente isotrope U-Werte berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

Abb. 1. Struktur des $[SRe(S_4)(S_3CMe_2)]^-$ -Anions in Kristallen von 1 mit Bindungslängen [pm] und Torsionswinkeln [°]. Bindungswinkel [°]: S(1)–Re–S(4) 90.3(2), S(1)–Re–S(5) 141.0(2), S(4)–Re–S(5) 78.4(2), S(1)–Re–S(7) 81.0(2), S(4)–Re–S(7) 143.5(2), S(5)–Re–S(7) 86.4(2), S(1)–Re–S(8) 110.1(2), S(4)–Re–S(8) 108.9(2), S(5)–Re–S(8) 108.9(2), S(7)–Re–S(8) 107.4(2), Re–S(1)–S(2) 112.4(3), S(1)–S(2)–S(3) 100.5(4), S(2)–S(3)–S(4) 99.9(4), Re–S(4)–S(3) 103.8(3), Re–S(5)–S(6) 112.6(3), S(5)–S(6)–C(1) 100.6(8), Re–S(7)–C(1) 109.0(7), S(6)–C(1)–S(7) 108.6(10), S(6)–C(1)–C(2) 104.9(15), S(7)–C(1)–C(2) 108.3(14), S(6)–C(1)–C(3) 110.6(14), S(7)–C(1)–C(3) 110.2(16), C(2)–C(1)–C(3) 114.0(17)

Atom	x	у	Z	$U(eq)^*$
Re	3975(1)	8150(1)	706(1)	43(1)
S(1)	2089(3)	7758(3)	277(2)	53(1)
S(2)	1946(4)	6213(3)	45(2)	63(1)
S(3)	3643(4)	5902(3)	- 160(2)	72(2)
S(4)	4515(4)	6481(3)	736(2)	66(1)
S(5)	2876(3)	9454(3)	1138(2)	58(1)
S(6)	4197(4)	10253(3)	1707(2)	70(1)
S (7)	4738(3)	9227(3)	2409(2)	70(2)
S(8)	5089(3)	8045(3)	1727(2)	59(1)
S(9)	4935(3)	8794(3)	- 62(2)	59(1)
Р	9975(3)	8907(2)	2867(2)	40(1)
C(1)	8916(7)	7599(6)	3732(5)	69(4)
C(2)	8022	7291	4150	87(5)
C(3)	7017	7883	4220	82(5)
C(4)	6907	8782	3872	70(4)
C(5)	7801	9089	3454	61(4)
C(6)	8806	8498	3384	44(3)
C(7)	10347(6)	10377(6)	3864(4)	56(3)
C(8)	11010	11137	4190	68(4)
C(9)	12101	11421	3945	59(4)
C(10)	12529	10945	3374	68(4)
C(11)	11865	10185	3049	63(4)
C(12)	10774	9901	3294	43(3)
C(13)	11852(8)	7715(6)	3302(3)	63(4)
C(14)	12725	7000	3216	69(4)
C(15)	12780	6528	2580	61(4)
C(16)	11961	6772	2030	62(4)
C(17)	11089	7487	2117	52(3)
C(18)	11034	7959	2753	46(3)
C(19)	9904(6)	9958(6)	1637(4)	59(4)
C(20)	9405	10220	984	69(4)
C(21)	8308	9821	736	62(4)
C(22)	7710	9160	1143	81(5)
C(23)	8210	8898	1796	59(4)
C(24)	9307	9297	2043	39(3)

Tabelle 3. Atomkoordinaten $(\cdot 10^4)$ und äquivalente isotrope Thermalparameter $(pm^2 \cdot 10^{-1})$ von 4

* Äquivalente isotrope U-Werte berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

etwa im Zentrum einer stark verzerrten quadratischen Pyramide, deren Basisebene von den Schwefelatomen der Chelatliganden und deren Spitze von einem terminal gebundenen Schwefelatom gebildet werden. Bei 1, 4, 5 und 6 nimmt Ring I (vgl. Tab. 5 und Abb. 3) jeweils annähernd Briefumschlagkonformation ein. Diese Konformation ist jedoch bei Ring II im Falle von 1 und 4 weniger deutlich

Abb. 2. Struktur des $[SRe(S_4)_2]^-$ -Anions in Kristallen von 4 mit Bindungslängen [pm] und Torsionswinkeln [°]. Bindungswinkel [°]: S(1)-Re-S(4) 90.8(1), S(1)-Re-S(5) 79.1(1), S(4)-Re-S(5) 149.5(1), S(1)-Re-S(8) 137.9(1), S(4)-Re-S(8) 78.0(1), S(5)-Re-S(8) 90.2(1), S(1)-Re-S(9) 110.3(1), S(4)-Re-S(9) 106.1(1), S(5)-Re-S(9) 104.4(1), S(8)-Re-S(9) 111.8(1), Re-S(1)-S(2) 111.0(2), S(1)-S(2)-S(3) 100.9(2), S(2)-S(3)-S(4) 98.6(2), Re-S(4)-S(3) 103.8(2), Re-S(5)-S(6) 102.2(2), S(5)-S(6)-S(7) 99.6(2), S(6)-S(7)-S(8) 99.2(2), Re-S(8)-S(7) 112.4(2)

Abb. 3. Schematische Darstellung der beiden Re-S-Ringsysteme. Zuordnung entsprechend den in diesem Artikel sowie in [9] und in [13] gegebenen Atombezeichnungen

	Atom	1	4	5	6
	Α	S (1)	S (1)	S(5)	S(4)
	В	S(2)	S(2)	S(6)	C(4)
Ring I	С	S(3)	S(3)	S(7)	C(3)
	D	S(4)	S(4)	S(8)	S(3)
	E	S (8)	S(9)	S(9)	S (5)
	Α'	S(5)	S(8)	S(4)	S (1)
	\mathbf{B}'	S(6)	S (7)	S(3)	C(1)
Ring II	C'	C(1)	S(6)	S(2)	C(2)
	D′	S(7)	S(5)	S(1)	S(2)

Abb. 4. Darstellung der Elementarzellen von 4 (a) und 5 (b) zur Verdeutlichung der unterschiedlichen Packungen der in zwei Modifikationen kristallisierenden Verbindung $(PPh_4)[SRe(S_4)_2]$ (Projektion entlang der x-Achse)

ausgeprägt. Ring II besitzt bei 5 und 6 annähernd Halbsesselkonformation. Bei 1 z.B. beträgt der Torsionswinkel, der durch die Atome S(8), Re, C(1) und C(3) definiert wird, 9.3° (d. h., Re, S(8), C(1) und C(3) liegen annähernd in einer Ebene) und der durch die Atome S(8), Re, C(1) und C(2) definierte Winkel -133.6° .

	Bindung	1	4	5	6
	Re–A	227.8	227.6	228.5	228.5
	A-B	211.2	214.6	212.6	183.1
Ring I	В-С	199.3	201.1	199.7	147.8
_	C-D	208.8	208.5	211.3	183.0
	D-Re	233.4	234.2	233.0	230.8
	Re–E	208.1	208.7	209.1	210.4
	Re–A'	227.4	227.0	225.5	229.0
	A'-B'	206.1	213.2	214.6	183.2
Ring II	B'-C'	181.6	200.9	202.7	148.6
	C'-D'	182.0	208.5	204.1	182.2
	D'-Re	228.5	234.2	234.1	231.2

Tabelle 4. Vergleich der Bindungslängen [pm] in den Anionen von1, 4, 5 und 6 [13] (s. Abb. 3)

Tabelle 5. Vergleich der Torsionswinkel [°] in den Ringen I und II der Anionen von 1, 4, 5 [9] und 6 [13] (s. Abb. 3)^a

	Bindung	1	4	5	6
	Re-A	-6.0	-6.4	-7.2	- 7.8
	А-В	-27.5	-28.0	-28.0	-20.9
Ring I	В-С	51.1	52.4	53.1	47.5
	C-D	- 58.8	-60.1	-61.4	- 51.4
	D-Re	36.6	38.2	38.4	28.3
Ring II	Re-A'	- 5.9	- 8.0	-15.2	-11.1
	A'-B'	-20.1	-26.7	-18.3	- 14.3
	B'-C'	43.9	52.6	48.8	40.5
	C'-D'	-53.0	-61.8	-62.5	-47.2
	D'-Re	31.5	39.3	44.6	28.6

^a Von den vier Atomen, welche den Torsionswinkel definieren, werden nur die zwei zentralen Atome aufgeführt

Cyclovoltammetrische Messungen an 1 und 3 in *DMF* zeigen, daß im Gegensatz zu $[SMo(S_4)_2]^{2-}$ [14] die Anionen von 1 und 3 nur quasireversibel reduzierbar sind.

Die vorliegenden Ergebnisse beweisen die hohe Bildungstendenz des $[SRe(S_4)_2]^-$ Anions, aber auch die Möglichkeit der Substitution von S-Atomen in MS_x -Ringen (vgl. auch [5, 6]). Bei der Bildung des thioketalähnlichen Liganden bei 1 handelt es sich formal um die Substitution eines S-Atoms durch eine $\{CMe_2\}$ -Gruppe. "Substitutionsreaktionen" dieser Art wurden bisher nur sehr selten beobachtet (vgl. Organometall-Polysulfidokomplexe des Ti [5]). Bemerkenswert ist weiterhin, daß bei 1 trotz eines ausreichenden Angebotes an Aceton bei der Reaktion nur ein $\{S_3(CMe_2)\}$ -Ligand auftritt. Die Reaktion hat möglicherweise Modell-Charakter für katalytische Prozesse, bei denen Re₂S₇ als selektiver Katalysator dient [7].

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Weiterhin danken wir der Firma Degussa AG für eine Rheniummetall-Spende.

Literatur

- [1] Müller A., Diemann E. (1987) Adv. Inorg. Chem. 31: 89
- [2] Müller A., Diemann E. (1987) Sulfides. In: Wilkinson G., Gillard R. D., McCleverty J. A. (Hrsg.) Comprehensive Coordination Chemistry, Vol. 2. Pergamon Press, Oxford, S. 515
- [3] Draganjac M., Rauchfuss T. B. (1985) Angew. Chem. 97: 745; Angew. Chem. Int. Ed. Engl. 24: 724
- [4] Müller A., Römer M., Römer C., Reinsch-Vogell U., Bögge H., Schimanski U. (1985) Monatsh. Chem. 116: 711
- [5] Giolando D. M., Rauchfuss T. B. (1984) Organometallics 3: 487
- [6] Coucouvanis D., Draganjac M. (1982) J. Am. Chem. Soc. 104: 6820; Coucouvanis D., Patil P. R., Kanatzidis M. G., Detering B., Baenziger N. C. (1985) Inorg. Chem. 24: 24
- [7] Davenport W. H., Kollonitsch V., Cline C. H. (1968) Ind. Eng. Chem. 60: 10
- [8] Diemann E. (1977) Z. anorg. allg. Chem. 431: 273
- [9] Müller A., Krickemeyer E., Bögge H. (1987) Z. anorg. allg. Chem. 554: 61
- [10] Cotton F. A., Kibala P. A., Matusz M. (1988) Polyhedron 7: 83
- [11] Müller A., Krickemeyer E., Bögge H., Penk M., Rehder D. (1986) Chimia 40: 50
- [12] a) International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham, 1974;
 b) Nicolet Analytical Instruments "SHELXTL" Revision 5.1, Dezember 1985
- [13] Blower P. J., Dilworth J. R., Hutchinson J. P., Nicholson T., Zubieta J. A. (1986) J. Chem. Soc. Dalton Trans.: 1339
- [14] Draganjac M., Simhon E., Chan L. T., Kanatzidis M. G., Baenziger N. C., Coucouvanis D. (1982) Inorg. Chem. 21: 3321; Müller A. (1982) Chimia 36: 157

Eingegangen 9. Dezember 1992. Angenommen 22. Dezember 1992

866